A Classification of Finite Metahamiltonian p-Groups
نویسندگان
چکیده
A finite non-abelian group G is called metahamiltonian if every subgroup of either abelian or normal in G. If non-nilpotent, then the structure has been determined. nilpotent, determined by its Sylow subgroups. However, classification p-groups an unsolved problem. In this paper, are completely classified up to isomorphism.
منابع مشابه
A Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملA Note on Absolute Central Automorphisms of Finite $p$-Groups
Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study some properties of absolute central automorphisms of a given finite $p$-group.
متن کاملIsoclinic Classification of Some Pairs $(G,G\')$ of $p$-Groups
The equivalence relation isoclinism partitions the class of all pairs of groups into families. In this paper, a complete classification of the set of all pairs $(G,G')$ is established, whenever $G$ is a $p$-group of order at most $p^5$ and $p$ is a prime number greater than 3. Moreover, the classification of pairs $(H,H')$ for extra special $p$-groups $H$ is also given.
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in mathematics and statistics
سال: 2021
ISSN: ['2194-671X', '2194-6701']
DOI: https://doi.org/10.1007/s40304-020-00229-0